Transformed Representations for Convolutional Neural Networks in Diabetic Retinopathy Screening
نویسندگان
چکیده
Convolutional neural networks (CNNs) are flexible, biologically-inspired variants of multi-layer perceptrons that have proven themselves to be exceptionally suited to discriminative vision tasks. However, relatively little is known on whether they can be made both more efficient and more accurate, by introducing suitable transformations that exploit general knowledge of the target classes. We demonstrate this functionality through pre-segmentation of input images with a fast and robust but loose segmentation step, to obtain a set of candidate objects. These objects then undergo a spatial transformation into a reduced space, retaining but a compact high-level representation of their appearance. Additional attributes may be abstracted as raw features that are incorporated after the convolutional phase of the network. Finally, we compare its performance against existing approaches on the challenging problem of detecting lesions in retinal images.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملDecision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks
Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...
متن کاملImage Quality Classification for DR Screening Using Convolutional Neural Networks
The quality of input images significantly affects the outcome of automated diabetic retinopathy screening systems. Current methods to identify image quality rely on hand-crafted geometric and structural features, that does not generalize well. We propose a new method for retinal image quality classification (IQC) that uses computational algorithms imitating the working of the human visual syste...
متن کاملDeep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images ...
متن کاملEarliest Diabetic Retinopathy Classification Using Deep Convolution Neural Networks
Expanding need about finding a diabetic retinopathy Similarly as soonest might stop dream misfortune to the prolonged diabetes tolerant In spite of endured youngs. Seriousness of the diabetic retinopathy illness may be measured In light of microaneurysms, exudates detections and it evaluations Similarly as Non-proliferative(NPDR) alternately Proliferative diabetic retinopathy patient(PDR). An r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014